

A cura dell'Istituto Alta Fedelt

Anno II - Settembre 1978

SPECIALE ALTOPARLANTI

DETERMINAZIONE DELLA RISPOSTA A BASSA FREQUENZA DI ALTOPARLANTI IN CASSA CHIUSA

MISURA DEI PARAMETRI CARATTERISTICI DEGLI* ALTOPARLANTI DINAMICI

IL PROBLEMA DEI CROSS-OVER

ISTITUTO ALTA FEDELTI

•

SPECIALE ALTOPARLANTI

In questo fascicolo

Renato Giussani

Pag.

3 Determinazione della risposta a bassa frequenza di altoparlanti in cassa chiusa

La misura della risposta di un altoparlante a frequenza inferiore a $100 \div 150$ Hz crea grossi problemi anche in camera anecoica. Per ovviare a questi inconvenienti si può ricorrere ad alcune tecniche alternative come la misura in campo vicino o il calcolo della risposta in frequenza a partire dalla determinazione elettrica del Q_T dell'altoparlante. L'autore illustra queste possibilità e sottolinea l'eccellente accordo tra i risultati sperimentali

L'autore illustra queste possibilità e sottolinea l'eccellente accordo tra i risultati sperimentali ottenuti con queste tecniche che ne giustifica una sempre più ampia diffusione.

Renato Giussani è nato a Como nel 1947. Laureato in Ingegneria Meccanica presso l'Università di Roma, riveste attualmente l'incarico di direttore tecnico della rivista Stereoplay. Fa parte del comitato 29 del CEI, è membro dell'Audio Engineering Society ed è uno dei soci fondatori dell'Istituto Alta Fedeltà.

Giancarlo Gandolfi

Pag. 10

Misura dei parametri caratteristici degli altoparlanti dinamici

Per il corretto progetto di un altoparlante è necessaria una buona conoscenza dei parametri fondamentali che caratterizzano l'altoparlante e delle leggi che ne governano il funzionamento.

L'Autore, dopo essersi soffermato sul circuito equivalente elettro-meccano-acustico dell'altoparlante, esamina in dettaglio la procedura seguita per la determinazione dei suoi parametri fondamentali.

Giancarlo Gandolfi è nato a Reggio Emilia nel 1940. Laureato in Ingegneria Elettronica, specializzato in calcolatori elettronici, si è occupato di trasmissioni a microonde, riveste attualmente l'incarico di direttore tecnico della RCF ed è uno dei soci fondatori dell'Istituto Alta Fedeltà.

Pag. 17

Il problema dei cross-over

Gian Piero Abbate

Il progetto di una rete di cross-over ottimale, nella quale cioè le relazioni di ampiezza e di fase dei singoli filtri siano tali che il segnale somma all'uscita della rete abbia nel dominio del tempo e della frequenza le stesse caratteristiche del segnale di ingresso, è un problema discusso da lungo tempo per il quale non era stata finora data una soluzione completa.

In questo articolo l'Autore propone una sua soluzione originale che risolve elegantemente il problema proposto.

La trattazione è di carattere analitico e non viene proposta alcuna soluzione pratica benché l'Autore ne abbia già verificato sperimentalmente la fattibilità.

Gian Piero Abbate, diplomato Capitano di lungo corso a Genova nel 1968, laureato a Padova in Fisica Elettronica nel 1974, specialista in bioingegneria e cibernetica, compositore e musicista, è attualmente responsabile della progettazione prodotti Alta Fedeltà presso le Industrie Seleco Zanussi S.p.A. dove ricopre il ruolo di Technical Product Manager Hi-Fi.

Supplemento al numero 74 di SUONO redatto a cura dell'Istituto Alta Fedeltà.

DETERMINAZIONE DELLA RISPOSTA A BASSA FREQUENZA DI ALTOPARLANTI IN CASSA CHIUSA

Il funzionamento a bassa frequenza degli altoparlanti è stato esaminato già da molti anni con alcune trattazioni particolarmente approfondite. La verifica delle prestazioni a frequenze inferiori ai 100 Hz incontra però spesso difficoltà pratiche difficilmente superabili. Dopo aver esposto due metodi di misura alternativi proposti da R.H. Small e D.B. Keele Jr., l'Autore fornisce una serie di confronti fra risultati di misure in campo vicino e risposte in frequenza calcolate analiticamente in base a parametri misurati con rilevazioni puramente elettriche sui sistemi in esame. Viene infine fornito un programma di calcolo per calcolatore da tavolo HP-97.

Introduzione

Condizione richiesta perché una misura abbia significato assoluto è che fornisca dati dipendenti esclusivamente dalle caratteristiche del dispositivo in esame, ovvero riconducibili a questi. Solo così è possibile garantire la ripetibilità della misura stessa ottenendo risultati utili alla formazione o alla verifica di teorie elaborate su modelli opportuni.

Per garantire la desiderata significatività, le misure acustiche su altoparlanti vengono effettuate in ambienti standardizzati nei quali le leggi di propagazione del suono siano note e controllate.

Il più importante di questi è la camera anecoica, che cerca di ricreare artificialmente le stesse condizioni del campo libero.

Sfortunatamente ottenere la completa eliminazione delle riflessioni dalle pareti diventa sempre più difficile man mano che la frequenza del suono emesso nella camera diminuisce e le dimensioni richieste sia per il locale sia per lo strato assorbente divengono ben presto proibitive.

Come conseguenza, per valutare con grande precisione le prestazioni a bassa frequenza degli altoparlanti, l'unico metodo universalmente accettato è a tutt'oggi la misura all'aperto.

Per effettuare rilevazioni con irradiazione su un angolo di 2π rad si usa seppellire il diffusore acustico con il pannello frontale a filo del terreno, mentre per rilevazioni con irradiazione libera su 4π rad sono stati usati sollevatori di vario tipo, in grado di portare sia il sistema acustico che il microfono di misura ad altezze dell'ordine dei 10 metri sul livello del suolo. Tralasciamo di esaminare i motivi di scomodità, imprecisione e lentezza di esecuzione di misure su altoparlanti in queste condizioni, mentre sottolineiamo che la possibilità di effettuarle è legata alle condizioni atmosferiche e di rumore ambiente.

Per ovviare ai suddetti inconvenienti, diversi ricercatori si sono applicati all'esame del problema e sono stati proposti almeno due metodi di misura alternativi, in forma direttamente applicabile ai casi reali, con un adeguato supporto teorico di dimostrazione del rispettivo campo di validità. Ci riferiamo ai metodi proposti da R.H. Small [1] al 13° convegno della IREE nel maggio del 1971 e da D.B. Keele Jr. [3] il 15 maggio 1973 al 45° convegno della AES a Los Angeles, di cui ci occuperemo più diffusamente nel seguito.

In particolare il metodo esposto da Keele estende la sua validità a tutto il campo di frequenze entro il quale l'altoparlante può essere ragionevolmente considerato un pistone vibrante rigido [3, p. 155].

Sotto la stessa ipotesi è possibile ricavare dall'equazione del moto del pistone una relazione che esprime il livello di pressione emesso dall'altoparlante in funzione di alcuni suoi parametri fisici fondamentali; appare quindi di estremo interesse la verifica sperimentale dell'accordo esistente fra le prestazioni misurabili con il metodo di Keele e quelle determinabili analiticamente.

Funzione di trasferimento

L'interesse di questo articolo è limitato all'esame della risposta in frequenza dell'altoparlante per ka < 1.

IAF 4 - Settembre 1978 - Supplemento al n. 74 di SUONO

A questa condizione la curva di risposta di un altoparlante funzionante in cassa chiusa è espressa in dB da [4, p. 225; 5, eq. 9; 2, eq. 28]:

(1) 20 log
$$\left| \frac{g^2}{\sqrt{(g^2-1)^2 + g^2/Q_{TCO}^2}} \right|$$

con:

$$g = \frac{\omega}{\omega_c} = \frac{f}{f_c}$$

e il livello di pressione sonora di riferimento pari a quello asintotico per frequenze superiori alla risonanza, nell'ipotesi che l'emissione si mantenga omnidirezionale e la membrana vibrante sia «controllata dalla massa», cioè operi ad accelerazione costante.

L'andamento della curva descritto dalla relazione (1) è quello tipico di un filtro passa-alto del second'ordine ed è completamente descritto dal valore del Q_{TCO} del diffusore. È quindi possibile conoscere la risposta

teorica di un altoparlante in cassa chiusa semplicemente misurandone il Q_{TCO} (in cassa) e facendo uso di un grafico riproducente una famiglia di curve di risposta normalizzate (vedi Fig. 1). A proposito di queste curve si può ricordare che quella corrispondente al valore di $Q_{TCO} = 0.5$ è relativa ad un sistema caratterizzato da smorzamento critico; per Q_{TCO} = 0,707 si ha risposta «massimamente piatta» (Maximally Flat), cioè la curva a livello più alto che tenda asintoticamente all'ordinata 0 dB senza assumere mai valori positivi (Butterworth); il valore di $Q_{TCO} = 1$ è invece generalmente considerato quello in grado di fornire la più estesa risposta in frequenza (0 dB per $f = f_c$) con una accettabile risposta ai transitori; è da notare però che molti costruttori specializzati di ottima reputazione dichiarano il Q_{TCO} del diffusore privo di filtro, scegliendo un fattore di merito del diffusore completo più alto, anche per prodotti in cui la ottimizzazione delle prestazioni tecniche è uno degli obiettivi principali di progetto.

R. Giussani - Misure di altoparlanti a bassa frequenza

Un metodo pratico e rapido per il calcolo della risposta teorica di una cassa chiusa è quello di fare uso della relazione (1) con l'ausilio di un elaboratore elettronico. Anche un piccolo calcolatore scientifico programmabile portatile è in grado di effettuare il calcolo della risposta per un numero discreto di frequenze in un tempo ragionevolmente breve ⁽¹⁾.

Metodi di misura proposti da Small e Keele

Il primo metodo di misura diretta della risposta a bassa frequenza di altoparlanti che non fosse influenzato dalle limitazioni inerenti l'uso di una camera anecoica (né fosse condotto in campo libero) è quello proposto da R.H. Small [1]. Il metodo si basa sulla considerazione che la velocità di volume in uscita da una cassa (indipendentemente dal numero di aperture presentate), nell'ipotesi di perdite per assorbimento nulle, è pari a:

(2) $U_o = p_B \omega C_{AB}$

La pressione in un punto a distanza «r» dalla cassa (per irradiazione su 2π è pari a:

(3)
$$p_r = (\varrho/2\pi r) \omega U_o$$

nella quale ρ è la densità dell'aria (1,18 kg/m³). Quindi per ottenere la rappresentazione dell'andamento della pressione acustica in funzione della frequenza a distanza «r» dal diffusore basta rilevare la pressione all'interno della cassa e moltiplicare due volte per altrettanti fattori proporzionali alla frequenza, come richiesto dalle equazioni (2) e (3). Questa operazione può essere compiuta direttamente (come suggerito dallo stesso Small) mediante due derivazioni successive del segnale elettrico fornito dal trasduttore di pressione, ovvero inserendo nel sistema di misura uno stadio avente guadagno crescente di 12 dB/ottava su tutta la gamma di frequenze interessate dalla misura.

Questo può essere un semplice filtro passa-alto del second'ordine caratterizzato da un fattore di merito Q = 0.5 e frequenza di taglio abbastanza lontana dalla massima frequenza di misura.

Small ha cercato di estendere la gamma di utilizzazione del suo metodo (verso frequenze sempre più alte) tenendo conto anche di effetti del second'ordine e compensandoli. Le due verifiche sperimentali che presenta dimostrano una ottima corrispondenza con i risultati teorici fino a circa 200 Hz. Anche Keele propone una misura effettuata con il metodo di Small, ma non avendo compensato la variazione della cedevolezza con la frequenza ed avendo utilizzato, come rete di doppia derivazione, un filtro passa-alto con punto a --3 dB a 1 kHz, l'andamento rilevato appare corretto solo fino a circa 600 Hz.

Il metodo di Small richiede, per riportare i valori di pressione misurata a quelli che si avrebbero a distanza nota, una calibrazione del sistema di misura piuttosto laboriosa; in particolare la costante di tempo del circuito di equalizzazione deve essere calcolata e variata per ogni sistema di altoparlanti sulla base di accurate misure effettuate sull'altoparlante sia in aria libera che in cassa. In cambio offre il vantaggio di poter essere

⁽¹⁾ vedi appendice.

applicato con uguale attendibilità sia a sistemi chiusi che a sistemi reflex, proprietà questa di non trascurabile importanza.

Viceversa Keele, sia analiticamente sia sperimentalmente, ha sottolineato la validità della misura in campo vicino e la sua corrispondenza alle misure effettuate in camera anecoica per frequenze alle quali l'ambiente di misura era ragionevolmente assimilabile al campo libero.

La validità del metodo si basa sulla considerazione che per basse frequenze tali che ka < 1, la pressione nel campo vicino di un pistone rigido vibrante montato su un piano infinito è direttamente proporzionale alla pressione in campo lontano secondo la [3, eq. 5]:

$$(4) \qquad p_{N} = \frac{2r}{a} p_{F}$$

nella quale \textbf{p}_{N} sta per «Near Field Pressure» e \textbf{p}_{F} per «Far Field Pressure».

Per il caso di emissione su un angolo di 4π la relazione diventa [3, eq. 6]:

$$(5) \qquad p_{N} = \frac{4r}{a} p_{F}$$

Ulteriori sviluppi dei calcoli e riferimenti a precedenti studi conducono Keele ad affermare che:

1) Al diminuire della frequenza la pressione nel campo vicino di un pistone rigido vibrante ad accelerazione costante tende asintoticamente ad un valore costante; per ka = 1,6 la pressione sonora è inferiore di 1 dB al valore asintotico [3, p. 155].

2) All'aumentare della distanza «r» dal pistone, la pressione sonora diminuisce di 1 dB per r/a = 0,11, mentre per valori di r/a inferiori tende asintoticamente ad un valore costante, che può essere calcolato per mezzo della (4) o della (5) [3, p. 156].

3) La distribuzione della pressione lungo la superficie di un pistone rigido circolare ha simmetria circolare e subisce un'attenuazione con la distanza dal centro tale da diminuire di 1 dB (per ka = 2) ad una distanza dal centro pari a 0,4 volte il raggio [3, p. 156].

Figura 2 - Disposizione sperimentale adottata per la misura dell'impedenza degli altoparlanti ($R_g = 5 \text{ Ohm}$)

IAF 4 - Settembre 1978 - Supplemento al n. 74 di SUONO

Verifiche sperimentali

In questa sede ci proponiamo di confrontare i risultati di alcune misure di risposta in frequenza effettuate su sistemi chiusi in campo vicino in ambiente semiriverberante, con le curve calcolate facendo uso della relazione (1).

L'utilizzazione della citata relazione (1) presuppone la conoscenza della frequenza di risonanza e del Q_{TCO} del sistema.

La frequenza di risonanza è stata determinata dalla misura del modulo dell'impedenza del sistema, effettuata con la disposizione di misura mostrata in fig. 2. La disposizione adottata permette anche (con l'aggiunta di un ohmetro di precisione) di rilevare con sufficiente approssimazione i dati necessari al calcolo del Q_{TCO} del diffusore secondo il metodo proposto da A.N. Thiele [6, p. 478]. Tale metodo è stato riproposto anche da Small [2] e si riassume nella possibilità di calcolare Q_{EC}, Q_{MC} e Q_{TCO} alla frequenza di risonanza di un altoparlante, in aria libera o in cassa, dalle seguenti relazioni:

(6)
$$\mathbf{Q}_{EC} = \frac{\mathbf{f}_{C}}{\Delta_{f}} \frac{\sqrt{|\mathbf{Z}_{VC}(j\omega)|_{M} \cdot \mathbf{R}_{E}}}{|\mathbf{Z}_{VC}(j\omega)|_{M} \cdot \mathbf{R}_{E}}$$
(7)
$$\mathbf{Q}_{MC} = \frac{\mathbf{f}_{C}}{\Delta_{f}} \sqrt{\frac{|\mathbf{Z}_{VC}(j\omega)|_{M}}{\mathbf{R}_{E}}}$$

(8)
$$\mathbf{Q}_{\text{TCO}} = \frac{\mathbf{f}_{\text{C}}}{\Delta_{\text{f}}} \sqrt{\frac{\mathbf{R}_{\text{E}}}{|\mathbf{Z}_{\text{VC}}|(j\omega)|_{\text{M}}}}$$

nelle quali $\Delta f = (f_2 - f_1) e f_1$, f_2 sono le frequenze prossime a quella di risonanza per le quali

(9)
$$|Z_{VC}(j\omega)| = \sqrt{|Z_{VC}(j\omega)|_{M} \cdot R_{E}}$$

La resistenza «R» di fig. 2 deve essere molto maggiore del massimo valore assunto dall'altoparlante alla risonanza. Supponendo di dover misurare una impedenza massima $|Z_{VC}(j\omega)|_M$ l'errore percentuale su questa rilevazione conseguente alla variazione della corrente,

Figura 3 - Schema di collegamento per la misura di Q_{TCO} . Al generatore non è richiesta una f.e.m rigorosamente costante in funzione della frequenza.

supposta costante, risulta pari a:

(10)
$$\Delta \left[\mathbf{Z}_{VC} \left(j\omega \right) \right] \% = \left(\frac{\left[\mathbf{Z}_{VC} \left(j\omega \right) \right]_{M}}{\mathbf{R}_{C}} - 1 \right) \cdot 100$$

nella quale R_{C} è la resistenza usata per calibrare il sistema.

Con R = 3300 ohm, R_c = 8,2 ohm e $|Z_{VC}(j\omega)|_{M} = 100$ ohm l'errore di misura risulta inferiore al 3%. La massima impedenza misurata su un altoparlante (in aria libera) fra quelli presi in considerazione è stata di 86 ohm.

Nel caso tale approssimazione non sia ritenuta sufficiente è possibile ricavare Q_{TCO} con la disposizione di misura di Fig. 3, con la quale si ricavano direttamente:

(11)
$$\frac{R_{E}}{|Z_{VC}(j\omega)|_{M}} = \frac{V_{DC}}{V_{M}}$$

mentre la tensione corrispondente alle frequenze $f_1 e f_2$ è pari a:

(12)
$$V_{1,2} = \sqrt{V_{M} \cdot V_{DC}}$$

Con il metodo descritto è possibile calcolare la risposta di un altoparlante montato in cassa chiusa a partire da misure esclusivamente elettriche ai suoi morsetti. L'accordo dei risultati ottenuti con le relative misure effettuate in campo vicino nella situazione sperimentale di fig. 4 è mostrato per quattro altoparlanti nella fig. 5. Le risposte così calcolate e misurate si riferiscono ad alimentazione degli altoparlanti tramite un generatore di tensione, in pratica un amplificatore di potenza dotato di fattore di smorzamento sufficientemente elevato, collegato tramite cavi a bassa resistenza.

Nei diffusori a più vie i woofer sono però normalmente pilotati tramite reti di filtro passive, più o meno elaborate, che hanno di solito la funzione di filtro passa-basso per un corretto accoppiamento acustico con gli altri altoparlanti costituenti il sistema.

La presenza di questa rete passiva fa sì che ai capi del

Figura 4 - Disposizione sperimentale adottata per la misura della risposta in frequenza in campo vicino. Diffusori appoggiati su un supporto alto 70 cm., in ambiente semiriverberante.

Confronto fra risposta calcolata e misurata in campo vicino di un woofer avente a = 12,5 cm (\varnothing nominale 30 cm), in aria.

Figura 5 - Confronto di risultati di misure di risposta in frequenza effettuate in campo vicino e risposte determinate analiticamente in base ai dati riportati sul lato destro dei grafici per quattro altoparlanti in cassa chiusa.

IAF 4 - Settembre 1978 - Supplemento al n. 74 di SUONO

morsetti di quattro altoparlanti montati in cassa chiusa e collegati al generatore tramite rete di crossover. Curve «b»: risposta in frequenza degli stessi altoparlanti senza filtro calcolata in base a misure elettriche ai morsetti. Curve «c»:

woofer sia presente una tensione variabile in funzione della frequenza. Questa variazione interessa sia la gamma di frequenze prossima e superiore alla frequenza di taglio del filtro, sia la gamma nella quale è normalmente richiesta una trasmissione a livello costante.

Tale effetto è evidenziabile e calcolabile quantitativamente considerando la funzione di trasferimento della rete di filtro terminata sull'impedenza complessa presentata dall'altoparlante, anziché su una resistenza pura.

Per ottenere la risposta in frequenza globale esibita dal diffusore completo di filtro, basta sommare alla risposta

IAF 4 - Settembre 1978 - Supplemento al n. 74 di SUONO

dell'altoparlante in cassa senza filtro (misurata in campo vicino o ricavata come detto a partire da misure elettriche) l'andamento in funzione della frequenza della tensione ai morsetti dell'altoparlante stesso alimentato attraverso il filtro (e montato regolarmente in cassa).

Nella fig. 6 sono confrontate le risposte in frequenza di quattro sistemi di altoparlanti completi di filtro calcolate esclusivamente mediante misure elettriche ai morsetti del diffusore e dell'altoparlante, con misure acustiche effettuate in campo vicino sul diffusore completo; si noti l'ottimo accordo su tutta la gamma di frequenze presentata. Una volta determinato l'andamento della risposta in frequenza del diffusore completo di filtro con uno dei metodi descritti, è possibile risalire al comportamento in regime impulsivo semplicemente in base al valore del Q_{TCO} del diffusore completo, ricavato a partire dalla risposta in frequenza per confronto con le curve normalizzate.

Conclusioni

È stata esaminata la possibilità di effettuare misure acustiche di risposta in frequenza in campo vicino, alle basse frequenze, di altoparlanti in cassa chiusa e sono stati confrontati i risultati ottenuti con questo metodo con quelli dei calcoli effettuati a partire da sole misure elettriche sul sistema elettroacustico completo.

I risultati mostrano un ottimo accordo entro tutto il campo di misura presentato, anche se rilevati in ambiente riverberante.

SIMBOLI E ABBREVIAZIONI

a C C _{AB} f f _c f ₁ , f ₂	raggio di un pistone radiante circolare velocità del suono nell'aria, = 344 m/s cedevolezza acustica della cassa alle basse frequenze, = $V_B/\rho c_2$ frequenza variabile, in Hz frequenza di risonanza del sistema, in Hz frequenze adiacenti ad f _c per cui $ Z_{VC}(j\omega) = \sqrt{ Z_{VC}(j\omega) } M \times R_E$
k	numero d'onda, $=\frac{2\pi}{\lambda} = \frac{\omega}{c}$
Рв	pressione acustica efficace in regime sta- zionario all'interno della cassa acustica
р _F	pressione acustica di picco nel campo lon-
PN	pressione acustica di picco nel campo vici- no di un pistone radiante
Pr	pressione acustica efficace a distanza «r»
Q _{EC}	fattore di merito del sistema alla frequenza f_{C}
Q _{MC}	fattore di merito del sistema alla frequenza f_c considerando le sole resistenze non elettri- che del sistema
Q _{TC}	fattore di merito totale del sistema alla fre- quenza f_C considerando tutte le resistenze del sistema
r	distanza di misura, dal sistema
Q _{TCO}	valore di Q_{TCO} con $R_g = O$
RΕ	mobile dell'altoparlante
Rg	resistenza interna del generatore
Uo	velocità di volume in uscita dal sistema
Z _{VC} (jω) _Μ	impedenza del sistema alla frequenza f _C densità dell'aria = 1.18 kg/m ³
ω	frequenza variabile in rad/s, = $2\pi f$
ως	frequenza di risonanza del sistema in rad/s, = $2 \pi f_c$

R. Giussani - Misure di altoparlanti a bassa frequenza

APPENDICE: Programma di calcolo per HP-97, (HP-67).

Si riporta un programma di calcolo e stampa dei risultati messo a punto per calcolatore programmabile stampante da tavolo HP-97 [7]; il livello di pressione acustica relativa viene calcolato per frequenze di centro banda di terzi di ottava normalizzati e il calcolo si arresta automaticamente alla frequenza f = 500 Hz. Il programma è stato inserito nella biblioteca Hi-Fi 1 pubblicata a cura della Hewlett Packard Italiana.

Tasto definibile dall'utilizzatore Α

Ċ

D

Е

Caricamento in memoria A del valore

Funzione svolta

- di fc в Caricamento in memoria B del valore
 - di Q_{TCO} Subroutine di stampa dati

 - Subroutine di calcolo della pressione relativa
 - Avvio del calcolo e della stampa della risposta per frequenze di centro banda di terzi di ottava normalizzati.

Per richiedere il calcolo e la stampa della pressione ad una frequenza diversa da quelle previste dal generatore di numeri interno, è possibile utilizzare direttamente la routine di calcolo definita dal tasto D, previo caricamento del valore di freguenza desiderato nel registro X.

Listing

001	*LBLA	21 11	031	SPC	16-11
002	STOA	35 11	032	PRTX	-14
003	RTN	24	033	R↓	-31
004	*LBLB	2i 12	034	PRTX	-14
005	STOB	35 12	035	RTN	- 24
006	RTN	24	036	*LBLE >	21 15
007	*LBLD	21 14	037	GSBC	23 13
008	STOD	35 14	038	1	01
009	RCLA	36 11	039		-62
010	÷	-24	040	- 2	02
011	X2	53	041	5	05
012	ST05	35 05	042	ST01	35 01
013	· 1	01	043	1	01
014	-	-45	044		-62
015	χ2	53	045	2	02
016	RCL5	36 05	046	6	06
017	RCLB	36 12	047	ST02	35 02
018	X2	53	048	2	02
019	÷	-24	049	0	00
020	· + · .	-55	050	ST03	35 03
021	5 X	54	051	*LBL0	21 00
022	178	52	052	RCL3	36 03
023	RCL5	36 05	053	GSBD	23 14
024	Х	-35	054	RCL3	36 03
025	ABS	16 31	055	RCL1	36 01
026	LOG	16 32	056	Х	-35
027	2	62	057	ST04	35 04
028	6	00	058	GSBD	23 14
029	Χ	-35	059	RCL4	36 04
030	RCLD	36 14	060	RCL2	36 02

<i>061</i>	Х	-35	087	RCL4	36 04	1	F
062	GSBD	23-14	088	GSBD	23 14	na bi da manganan	ဂ်
063	- 2	02	089	RCL4	36 04		A
064	ST×3	35-35 03	090	RCL1	36 01		
065	RCL3	36 03	091	X	-35		
066	GSBD	23 14	092	GSBD	23 14		
067	2	02	093	2	02		H
<i>068</i>	ST×4	35-35 04	094	ST×3	35-35 03		Å
069	RCL4	36 04	095	RCL3	36 03		41
070	GSBD	23 14	096	GSBD	23 14	and a second	
071	RCL4	36 04	097	RCL1	36 01		
072	RCL2	36 02	098	ST×3	35-35 03	arvio a Perda	
073	Х	-35	099	GTOØ	22 00		
074	6	06	100	*LBLC	21 13		
075	- 3	03	101	SPC	16-11		
076	Ø	00	102	RCLA	36 11		
077	X≨Y?	16-35	103	PRTX	-14		
078	. R∕S	51	104	RCLB	36 12	L. C.	
079	X∓Y	-41	105	PRTX	-14		
080	GSBD	23 14	106	SPC	16-11		
081	2	02	107	SPC	16-11		
082	ST×3	35-35 03	108	SPC	16-11		
083	RCL3	36 03	109	SPC	16-11		
084	GSBD	23 14	110	SPC	16-11		
085	2	02	111	RTN	24		
086	ST×4	35-35 04	112	R∕S	51	address of the	

E Hz	43.10	***	-1.41	***
QTCO	0.57	東京東 -		
			100.00	***
		*	-0.89	米水 市
			125.00	冰水 木
Hz	20.00	***	-0.56	***
dB	-14.37	軍軍軍		
			160.00	軍軍軍
	25.00	冰冰冰	-0.33	草菜菜
	-11.11	冰冰冰		
			200.00	冰冰冰
	31.50	***	-0.21	家家家
	-8.09	米米 本		
			250.00	東東京
	40.00	東京東	-0.13	冰冰冰
	-5.50	***		
			315.00	東東東
	50.00	***	-0.03	苯苯苯
	-3.65	准派法		
		-	4 <i>00.00</i>	東京東
	63.00	***	-0.05	车车车
	-2.31	***		
		Long Sector	500.00	東東京
	80.00	***	-0.03	***
		1		

AVVERTENZA

In queste note abbiamo deciso di adottare i simboli originali degli autori citati, dando ove possibile la preferenza a quelli proposti da R.H. Small. Vogliamo richiamare l'attenzione sul fatto che il fattore di merito totale di un sistema costituito da un altoparlante montato in cassa chiusa, alimentato da un amplificatore, dipende anche dalla resistenza di uscita di quest'ultimo; il simbolo Q_{TCO} rappresenta il Q totale del sistema nel caso in cui questa resistenza sia nulla.

Nella sua trattazione sui diffusori reflex, pubblicata dal Journal dell'AES nel fascicolo di giugno 1973 (pag. 363), Small propone il più comodo simbolo Q_T per rappresentare il Q totale dell'altoparlante alla sua frequenza di risonanza (f_c) dovuto a tutte le resistenze del sistema.

Riteniamo che questo simbolo possa sostituire anche Q_{TCO} o Q_{TS} (Q dell'altoparlante ad f_c derivante da tutte le sue resistenze). Sottolineiamo che in un moderno sistema alta fedeltà i diffusori acustici sono normalmente collegati ad un amplificatore caratterizzato da elevato fattore di smorzamento, per cui il Q_{TC} (se i cavi di collegamento, sono convenientemente dimensionati) si riduce in pratica sempre a Q_{TCO} .

Bibliografia

- R.H. Small, «Simplified Loudspeaker Measurements at Low Frequencies». J. Audio Eng. Soc., vol. 20, pp. 28-33 (Gen./Feb. 1972).
- [2] R.H. Small, "Direct-Radiator Loudspeaker System Analysis". J. Audio Eng. Soc., vol. 20, pp. 383-395 (Giugno 1972).
- [3] D.B. Keele Jr., «Low-Frequency Loudspeaker Assessment by Nearfield Sound-Pressure Measurement». J. Audio Eng. Soc., vol. 22, pp. 154-162 (Apr. 1974).
- [4] L.L. Beranek, *Acoustics*, pp. 208-239 (McGraw-Hill, New York, 1954).
- [5] J.F. Novak, «Performance of Enclosures for Lo-Resonance High-Compliance Loudspeakers». IRE Trans. Audio, vol. AU-7, p. 5 (Gen./Feb. 1959).
- [6] A.N. Thiele, «Loudspeakers in Vented Boxes». J. Audio Eng. Soc., vol. 19, pp. 382-392 (Maggio 1971), e pp. 471-483 (Giugno 1971).
- [7] Hewlett Pakard Italiana, Biblioteca di alta fedeltà per calcolatori portatili programmabili HP-97, HP-67. Programma Hi-Fi 1 11-A.

MISURA DEI PARAMETRI CARATTERISTICI DEGLI ALTOPARLANTI DINAMICI

Giancarlo Gandolfi

Scopo di questo articolo è di specificare i parametri che caratterizzano un altoparlante dinamico e indicarne le corrette metodologie di misura.

Alcuni di questi dati sono indispensabili per un moderno e corretto progetto delle casse acustiche. Cercheremo di uniformare la simbologia con quella impiegata dagli autori più importanti per facilitare la consultazione ed il confronto delle formule che è possibile trovare in altri testi. Speriamo che questo modesto sforzo possa confortare quanti si stanno adoperando al fine di trasformare definitivamente l'acustica in una scienza esatta e possa altresi indurre altri ad abbandonare l'aspetto puramente «artistico» per impegnarsi nella soluzione dei circuiti elettro-meccano-acustici.

L'altoparlante a bobina mobile rappresenta uno dei sistemi più economici per trasformare un segnale elettrico in uno acustico. Dalla sezione di fig. 1 appare la sua semplicissima struttura con membrana (A) in carta o altro materiale, sospesa ad una struttura rigida (B), chiamata «cestello» dell'altoparlante, per mezzo della

sospensione (C) e del centratore (D). Il «motore» di questo trasduttore è costituito da una bobina mobile (E) rigidamente connessa al cono e immersa in un campo magnetico (F) di costante intensità. Di solito il cono è sufficientemente rigido perché si possa pensare che, almeno alle basse frequenze, si muova in maniera uniforme con velocità costante «v» in tutti i suoi punti. Il diaframma dell'altoparlante viene considerato come un pistone rigido di raggio «a» fino a quella frequenza per cui intervengono vibrazioni radiali e concentriche supplementari, che interagiscono con l'emissione primaria.

Individuazione degli elementi

Per studiare le prestazioni di un altoparlante occorre costruire dei circuiti elettrici equivalenti che ne simulino il funzionamento. È però prima indispensabile individuare gli elementi caratteristici, identificarli e quantizzarli con numeri.

La bobina mobile ha una resistenza propria R_E ed una induttanza L, essendo avvolta su supporto circolare ed immersa in una struttura magnetica. L'equipaggio mobile complessivo, costituito dal peso della membrana più quello della bobina mobile (M_{MD}) è montato su sospensioni flessibili, che lo mantengono in posizione centrale. Queste sospensioni sono rappresentate da una complianza meccanica totale C_{MS} e da una resistenza R_{MS} che tiene conto degli attriti che fatalmente ostacolano ogni movimento in natura.

Poiché l'altoparlante deve irradiare suoni nell'aria, questo mezzo reagisce alla radiazione con una resistenza R_{MR} (resistenza meccanica di radiazione) e con una parte complessa X_{MR} (reattanza meccanica di radiazione).

Altri termini che possono tenere conto di piccoli fenomeni che avvengono all'interno dell'altoparlante sono assolutamente ininfluenti e non vengono presi in considerazione in una trattazione generale del funzionamento del trasduttore.

La cosa che complica maggiormente lo studio di questo dispositivo elettroacustico è il fatto che mentre tutti gli altri elementi sono costanti, la resistenza e la reattanza di radiazione sono funzioni della frequenza.

Impedenza di radiazione

Limitandoci a considerare il campo delle basse frequenze l'impedenza di radiazione è quella relativa (fig. 2) ad un pistone rigido di raggio «a» montato su un baffle piano infinito e infinitamente rigido. L'analisi di queste curve è di fondamentale importanza per capire il funzionamento dell'altoparlante. In particolare la resistenza di radiazione R_{MR} è il parametro quasi più importante perché tiene conto della potenza acustica che effettivamente viene irradiata nell'aria. Mentre alle frequenze medie e alte questa resistenza rimane elevata e molto costante, alle frequenze basse si ha una diminuzione progressiva al ritmo di 6 dB per ottava.

La frequenza di transizione tra queste due gamme distinte di funzionamento è quella per cui Ka è uguale a uno, cioè quando la circonferenza del pistone uguaglia

la lunghezza d'onda
$$(\frac{2\pi}{\lambda}a = 1 \qquad 2\pi a = \lambda)$$

Osservando l'impedenza di radiazione, per esempio, di un altoparlante da 12'' (300 mm) di diametro nominale, ci accorgiamo che i valori assunti sono molto contenuti alle frequenze basse, senz'altro trascurabili in confronto agli altri parametri fissi.

Limitando l'indagine alla frequenza di risonanza dell'altoparlante e nel suo intorno, si possono eliminare nei

Figura 3 - Andamento tipico del modulo dell'impedenza di un altoparlante per note basse. L'aumento del valore oltre i 200 Hz è dovuto all'induttanza della bobina mobile.

IAF 4 - Settembre 1978 - Supplemento al n. 74 di SUONO

circuiti equivalenti le impedenze di radiazione, anche se poi se ne deve tenere ovviamente conto nel calcolo delle potenze acustiche irradiate.

Un altro parametro che, sempre ai fini di una trattazione completa ma anche snella e semplice, può essere trascurato è l'induttanza propria della bobina. Si può vedere in fig. 3 che l'induttanza si fa «sentire» solo dalle frequenze medio-basse in poi.

Circuiti elettro meccano acustici

Si possono costruire tre differenti tipi di circuiti elettrici equivalenti dell'altoparlante, a seconda che si consideri il suo funzionamento meccanico, le sue caratteristiche acustiche o le relazioni tra tensione e corrente della bobina mobile alle varie frequenze. Pur essendo circuiti assai diversi e con finalità opposte, i parametri che vi compaiono sono tra loro strettamente collegati.

In questa sede ci interessa l'esame del circuito elettrico perché i parametri meccanici lo influenzano direttamente ed è possibile, come dimostreremo, ricavarne semplicemente il valore.

Una volta noti i parametri si possono costruire gli altri circuiti: in quello meccanico si potrà ricavare l'andamento della velocità della bobina, mentre in quello acustico, assai simile, si potrà ottenere la velocità di volume che è direttamente collegata con la potenza acustica e la pressione sonora. Sarà bene non confondere mai i tre circuiti; per non generare confusione mostriamo un prospetto con tutti i parametri e i relativi rapporti reciproci.

Figura 4 - A) Circuito elettrico equivalente al sistema meccanico dell'altoparlante. Sono state trascurate sia l'induttanza della bobina mobile (che andrebbe in parallelo alla resistenza) che la resistenza di radiazione (che andrebbe in serie all'induttanza). La soluzione del circuito darebbe la velocità di spostamento u del sistema mobile.

B) Circuito elettrico equivalente al sistema acustico dell'altoparlante. La sua soluzione darebbe la velocità di volume U (pari al prodotto della velocità per l'area del pistone) da cui si ricava facilmente sia la pressione sonora che la potenza acustica irradiata.

C) Circuito elettrico vero e proprio in cui sono indicati i morsetti A-B dell'altoparlante. Nel blocchetto tratteggiato è rappresentato l'amplificatore come generatore di segnale e_g con la sua resistenza d'uscita R_q.

Circuito elettrico equivalente

l punti A - B di fig. 4c rappresentano i morsetti dell'altoparlante mentre nel blocchetto tratteggiato troviamo il generatore (amplificatore) di tensione e_g con la sua resistenza interna R_g . La resistenza R_E è quella della bobina mobile mentre R_{ES} tiene conto delle perdite per attrito nelle sospensioni dell'altoparlante.

La capacità C_{MES} è determinata dalle masse in movimento, mentre la complianza delle sospensioni produce una induttanza L_{CES} nel circuito elettrico equivalente.

$$\begin{array}{l} R_{E} & resistenza bobina mobile \\ R_{ES} = B^{2}l^{2}/R_{MS} & resistenza dovuta alle perdite nelle \\ sospensioni \end{array}$$

 $C_{MES} = M_{MS}/B^2l^2$ capacità elettrica dovuta alle masse in movimento

Le parti reattive, dovute rispettivamente alla massa dell'equipaggio mobile ed alla complianza delle sospensioni, si annullano ad una certa frequenza, chiamata *frequenza di risonanza dell'altoparlante in aria libera:*

$$f_{\rm S} = \frac{1}{2\pi \sqrt{C_{\rm AS} \cdot M_{\rm AS}}} = \frac{1}{2\pi \sqrt{C_{\rm MS} \cdot M_{\rm MS}}}$$

L'andamento dell'impedenza è quello ben noto, tipico dei risonatori, di fig. 3: alla frequenza di risonanza si ha come massimo valore la somma della resistenza della bobina mobile più la resistenza elettrica dovuta agli attriti delle sospensioni del cono, mentre per frequenze molto elevate (f $\rightarrow \infty$) e molto basse (f \rightarrow 0) l'impedenza si riduce al minimo con la sola resistenza di bobina (trascurando l'induttanza propria).

Anche questo circuito risonante è caratterizzato da un fattore di merito «Q» che rappresenta il rapporto tra la

G. Gandolfi - Parametri caratteristici degli altoparlanti

potenza reattiva e la potenza attiva effettivamente dissipata nelle resistenze.

Per comodità conviene considerare separatamente gli effetti delle resistenze e definire un Q_{MS} (Q meccanico):

$$Q_{MS} = \omega_S C_{MES} R_{ES}$$

che tiene conto della resistenza di attrito, ed un Q_{ES} (Q elettrico):

$$Q_{ES} = \omega_S C_{MES} R_E$$

che tiene conto solo della potenza dissipata nella R della bobina mobile.

Il fattore di merito complessivo è dato ovviamente dalla combinazione dei due Q prima definiti:

$$\frac{1}{Q_{T}} = \frac{1}{Q_{MS}} + \frac{1}{Q_{ES}}$$

$Q_{T} = \frac{Q_{MS} Q_{ES}}{Q_{MS} + Q_{ES}}$

Impedenza

L'impedenza del circuito di fig. 4 vista dai morsetti A B dell'altoparlante vale:

$$Z (S) = R_{E} + R_{ES} \frac{S/Q_{MS}}{S^{2}/\omega_{S} + S Q_{MS} + \omega_{S}}$$

il modulo di questa grandezza è quello che viene normalmente tracciato e troviamo sempre indicato per altoparlanti e casse.

Per rilevare il grafico dell'impedenza si può usare sia il sistema del generatore a corrente costante che quello a tensione costante. Disponendo in serie alla impedenza da misurare (altoparlante) una resistenza di valore

Figura 5 - Set per il tracciamento del modulo d'impedenza dell'altoparlante

A - generatore a frequenza variabile

B - amplificatore di potenza

C - altoparlante in prova D - tracciatore automatico

La resistenza posta in serie all'altoparlante deve avere valore superiore al massimo assunto dall'altoparlante nello spettro audio.

IAF 4 - Settembre 1978 - Supplemento al n. 74 di SUONO

molto più elevato si può mantenere praticamente costante la corrente circolante nel circuito, per cui la tensione ai capi dell'altoparlante risulterà proporzionale all'impedenza stessa e può essere inviata ad un registratore per tracciarne la variazione in funzione della frequenza.

Vediamo ora come è possibile ricavare tutti i parametri dell'altoparlante semplicemente analizzando la curva di impedenza in alcuni punti caratteristici nei pressi della risonanza.

Set di misura

Per la misura della resistenza di bobina mobile R_E è bene munirsi di un ottimo ponte a filo di buona precisione perché un errore in questo rilievo incide su tutte le altre misure. Un voltmetro ed un amperometro, collegati secondo lo schema di fig. 6 servono a individuare frequenza per frequenza l'impedenza del trasduttore; si può sostituire l'amperometro con un altro voltmetro, prelevando la tensione ai capi di una resistenza di bassissimo valore posta in serie al sistema.

L'altoparlante può essere misurato con o senza schermo, è però preferibile la prima condizione perché lo schermo altera leggermente la frequenza di risonanza; deve anche essere fissato in maniera da evitare qualsiasi vibrazione e tutte le aree di passaggio dell'aria devono essere libere. Poiché gli altoparlanti per casse a sospensione acustica hanno sospensioni molto cedevoli, per non modificarne l'assetto è indispensabile eseguire le misure in posizione verticale (asse dell'altoparlante parallelo al terreno).

La potenza applicata all'altoparlante deve sempre essere molto ridotta; per rimanere nel campo di linearità del sistema, è bene non superare mai il decimo di watt. Tutti i parametri sono tipici del funzionamento con «piccoli livelli di segnale».

ſs

La frequenza di risonanza è quella per cui l'impedenza dell'altoparlante raggiunge il suo massimo valore alle frequenze basse. Se il picco non è molto pronunciato, la lettura può essere incerta ed è bene effettuare un controllo della frequenza di risonanza calcolando la radice quadrata del prodotto di frequenze ad ugual valore di impedenza sui due lati della curva. La misura della frequenza deve essere fatta con un frequenzimetro digitale, non potendo essere sufficiente l'indicazione della scala di un generatore a frequenza variabile, per precisa che possa essere.

RE

La resistenza della bobina mobile viene misurata direttamente con un ponte e corrisponde all'impedenza dell'altoparlante a frequenza zero.

Q

Si determina il valore massimo dell'impedenza (Z max) raggiunto alla frequenza di risonanza e si definisce con r_c il rapporto tra questa impedenza e la resistenza di

bobina mobile (
$$r_c = \frac{Z \max}{B_c}$$
)

Si trovano quindi le due frequenze f₁ ed f₂ (f₁< f_s $f_2 > f_s$) il cui valore di impedenza è pari a R_E $\sqrt{r_c}$

$$\mathbf{Q}_{MS} = \frac{\mathbf{f}_{S} \mathbf{V} \mathbf{r}_{c}}{\mathbf{f}_{2} - \mathbf{f}_{1}} \quad \mathbf{Q}_{ES} = \frac{\mathbf{Q}_{MS}}{\mathbf{r}_{c} - 1} \quad \mathbf{Q}_{T} = \frac{\mathbf{Q}_{MS}}{\mathbf{r}_{c}}$$

Per la dimostrazione della validità del criterio appena esposto rimandiamo alla lettura del brillante scritto di Small (J.A.E.S. N° 5, vol. 20; ricordiamo solamente che

Figura 6 - Set per la misura dei parametri dell'altoparlante

A - generatore a frequenza variabile

B - amplificatore di potenza

C - altoparlante in prova

D - voltmetro per la misura della tensione ai capi della resistenza R, proporzionale alla corrente circolante nell'altoparlante

IAF 4 - Settembre 1978 - Supplemento al n. 74 di SUONO

E - voltmetro per la misura della tensione applicata all'altoparlante

F - frequenzimetro

La resistenza R deve avere un valore tanto più basso dell'impedenza minima dell'altoparlante in modo da non alterarne il funzionamento.

le due frequenze devono essere tali che la loro media geometrica sia proprio la frequenza di risonanza (f_s = $\sqrt{f_1 \cdot f_2)}$

Poiché la ricerca del valore inferiore può essere difficoltosa, soprattutto se è troppo basso, è possibile calcolarlo direttamente:

$$\mathbf{f}_1 = \frac{\mathbf{f}_S^2}{\mathbf{f}_2}$$

Mms

Applicando al cono dell'altoparlante una massa supplementare M' di valore noto, la sua frequenza di risonanza si abbassa fino al valore

$$f'_{S} = \frac{1}{2\pi \sqrt{C_{MS} (M_{MS} + M')}}$$

Il rapporto tra i quadrati della nuova frequenza di risonanza e di quella vecchia è proporzionale alle rispettive masse mobili

$$\frac{f_{\rm S}^{12}}{f_{\rm S}^2} = \frac{M_{\rm MS}}{M_{\rm MS} + M'}$$

Essendo state misurate le frequenze ed essendo nota la massa aggiunta, l'unico elemento incognito è proprio M_{MS} :

$$M_{MS} = M' \frac{f_S'^2}{f_S^2 - f_S'^2}$$

Inutile dire che occorre leggere con grande precisione il valore delle frequenze di risonanza perché soprattutto la differenza dei quadrati al denominatore è molto critica. La massa aggiunta, inoltre, deve essere di materiale non magnetico.

CAS, CMS, VAS

A questo punto è semplicissimo determinare la complianza acustica (C_{AS}) che non deve essere assolutamente confusa con la complianza meccanica C_{MS} , spesso fornita dai costruttori di altoparlanti e legata alla prima dal rapporto:

$$\mathbf{C}_{\mathsf{AS}} = \mathbf{C}_{\mathsf{MS}} \cdot \mathbf{S}_{\mathsf{D}}^2$$

La complianza meccanica viene espressa in metri per newton e indica quanto si sposta il corpo fisico sotto l'applicazione della forza di un newton (circa 100 grammi):

$$C_{\rm MS} = \frac{1}{4\pi^2 \,\mathrm{M}_{\rm MS} \cdot \mathrm{f}_{\rm S}^2}$$

Al posto di queste complianze viene spesso utilizzata la grandezza V_{AS} che rappresenta il volume d'aria che ha la stessa complianza delle sospensioni dell'altoparlante

$$V_{AS} = \varrho_o C^2 \cdot C_{AS}$$

Si può anche misurare direttamente la complianza meccanica delle sospensioni, aggiungendo una massa

nota al cono e misurando lo spostamento dello stesso in regime stazionario con un micrometro di profondità.

La forza, come si sa, è uguale al prodotto della massa per la accelerazione di gravità:

$$F(forza) = M'g = M' \cdot 9,8$$
 newton

R_{ES}, R_{MS}

La resistenza elettrica dovuta agli attriti meccanici delle sospensioni è data dalla differenza tra l'impedenza massima e la resistenza della bobina mobile. Anche in questo caso è bene non confondere tale resistenza elettrica (R_{ES}) con la resistenza meccanica (R_{MS}) che viene inserita nel circuito meccanico equivalente dell'altoparlante

$$R_{MS} = \frac{B^2 I^2}{R_{ES}}$$

Resistenza del generatore e dei collegamenti

La resistenza d'uscita dell'amplificatore si pone in serie alla resistenza della bobina mobile e può influenzare in maniera notevole il Q del sistema. Anche le resistenze dei circuiti di collegamento hanno lo stesso effetto. Il Q elettrico viene modificato in maniera proporzionale all'incremento di resistenza:

$$Q_E = Q_{ES} \frac{R_g + R_E}{R_F}$$

 $Q_E = Q$ del sistema altoparlante + amplificatore $Q_{ES} = Q$ elettrico del solo altoparlante

L'aumento della resistenza in serie alla bobina conduce altresì ad un aumento del Q complessivo che tiene conto di tutte le R del sistema.

Normalmente i moderni amplificatori hanno smorzamenti elevatissimi ed in conseguenza le loro resistenze d'uscita sono sempre molto piccole in confronto alla resistenza di bobina. Se però l'amplificatore facesse parte integrante del trasduttore si potrebbe pensare di agire sulla controreazione per ottenere un Q finale di valore desiderato potendo usufruire di R_g positive, nulle o anche negative.

La R_g si calcola semplicemente dopo aver misurato la tensione a vuoto e la tensione e_R su carico R noto:

$$R_g = R \frac{e_o - e_R}{e_R}$$

Unità di misura

Per molto tempo in acustica è stato utilizzato il sistema di misura CGS perché si riteneva che le unità di base fossero più proporzionali alle grandezze in esame. Nel 1960 la Conferenza Generale dei Pesi e delle Misure denominò col termine SI (International System) il sistema coerente di unità, basato sulle seguenti quantità:

IAF 4 - Settembre 1978 - Supplemento al n. 74 di SUONO

	ELETTRICA		MECCANICA		ACUSTICA	
CAPACITA	C _{MES}	$\frac{M_{AS} \cdot S_{D}^{2}}{B^{2} \cdot I^{2}}$ $\frac{M_{MS}}{B^{2} \cdot I^{2}}$	С _{мs}	$\frac{C_{AS}}{S_D^2}$ $\frac{L_{CES}}{B^2 \cdot I^2}$	C _{AS}	$\begin{array}{c} \textbf{C}_{\text{MS}} \leftarrow \textbf{S}_{\text{D}}^2 \\ \\ \underline{\textbf{L}_{\text{CES}}} \leftarrow \textbf{S}_{\text{D}}^2 \\ \hline \textbf{B}^2 \leftarrow \textbf{I}^2 \end{array}$
INDUTTANZA	L _{CES}	$\frac{C_{AS} \cdot B^2 \cdot I^2}{S_D^2}$ $C_{MS} \cdot B^2 \cdot I^2$	M _{MS}	$M_{AS} \cdot S_D^2$ $B^2 \cdot I^2 \cdot C_{MES}$	M _{AS}	$\frac{\frac{M_{MS}}{S_D^2}}{\frac{B^2 \cdot I^2 \cdot C_{MES}}{S_D^2}}$
RESISTENZA	R _{es}	$\frac{B^2 + I^2}{S_D^2 + R_{AS}}$ $\frac{B^2 + I^2}{R_{MS}}$	R _{MS}	$\frac{R_{AS} \cdot S_{D}^{2}}{\frac{B^{2} \cdot I^{2}}{R_{ES}}}$	R _{AS}	$\frac{\frac{R_{MS}}{S_D^2}}{\frac{B^2 \cdot I^2}{S_D^2 \cdot R_{ES}}}$

Figura 7 - Relazioni tra le componenti dei tre circuiti equivalenti dell'altoparlante.

unità	grandezze
metro	lunghezza
chilogrammo	massa
secondo	tempo
ampère	corrente elettrica

ed altre che nel nostro caso non interessano.

Il sistema SI include dunque come sottosistemi, o sistemi parziali, l'MKS e l'MKSA, detto anche sistema Giorgi.

Invitiamo dunque tutti all'uso di queste unità di misura anche se qualche volta possono apparire scomode, ma riteniamo sia solo un problema di abitudine. I parametri che più interessano in acustica sono così espressi col sistema SI:

С	capacità elettrica	farad
L	induttanza elettrica	henry
R	resistenza elettrica	ohm
См	complianza meccanica	m/newton
M _M	massa meccanica	ka
R _M	resistenza meccanica	ohm meccanici
CA	complianza acustica	m ⁵ /newton
MA	massa acustica	kg/m ⁴
RA	resistenza acustica	ohm acustici
		∫ newton sec [−]
		m ⁵

Conclusioni

Dall'esame della curva di impedenza in alcuni punti caratteristici abbiamo ricavato tutti i parametri essenziali dell'altoparlante. È poi possibile ricavare anche tutti gli altri dati relativi ai tre circuiti equivalenti prima descritti. Lo studio del comportamento dell'altoparlante alle basse frequenze è a questo punto estremamente semplice ed i suoi parametri sono fondamentali per progettare le casse acustiche di qualsiasi tipo.

- SIMBOLI E ABBREVIAZIONI В densità di flusso magnetico nel traferro velocità del suono (344 m/sec.) С CAS complianza acustica delle sospensioni complianza meccanica delle sospensioni $C_{\rm MS}$ CMES capacità elettrica dovuta alle masse in movimento tensione del generatore eg f_S frequenza di risonanza dell'altoparlante lunghezza della bobina $\mathsf{L}_{\mathsf{CES}}$ induttanza elettrica dovuta alla complianza delle sospensioni MAS massa acustica delle parti in moto e dell'aria M_{MR} massa d'aria su una faccia del cono dell'altoparlante M_{MS} massa meccanica in moto M_{MD} massa del cono e della bobina mobile Q_{ES} Q dell'altoparlante dovuto alle sole resistenze elettriche Q_{MS} Q dell'altoparlante dovuto alle resistenze meccaniche QT Q complessivo dell'altoparlante alla risonanza R_E resistenza della bobina mobile R_g R_{AS} resistenza d'uscita dell'amplificatore resistenza acustica dovuta agli attriti delle sospensioni R_{ES} resistenza elettrica dovuta agli attriti delle sospensioni R_{MS} resistenza meccanica dovuta agli attriti delle sospensioni R_{MR} resistenza meccanica di radiazione S_D area del pistone equivalente all'altoparlante $(S_D = \pi a^2)$ velocità lineare u
- U velocità di volume
- V_{AS} volume d'aria con complianza equivalente alle sospensioni
- Z_s impedenza dell'altoparlante
- ho_{o} densità dell'aria (= 1,18 Kg/m³) a temperatura ambiente

Figura 8 - Sequenza delle operazioni consigliate per il rilievo dei parametri di un altoparlante. In rettangolo sono indicate le misure mentre il triangolo rappresenta i calcoli necessari.

ESEMPIO

Un altoparlante a bobina mobile del diametro nominale di 12'' (300 mm), avente però un diametro effettivo (2d) di radiazione di 243 mm, ha dato i seguenti risultati alla prova dei parametri prima esposti:

Questi parametri sono essenziali per l'identificazione completa dell'altoparlante potendo da essi facilmente ricavare tutti gli altri elementi mancanti per la completa costruzione dei tre circuiti equivalenti:

$$R_{ES} = Z_{max} - R_E = 57,95$$
 ohm

$$C_{AS} = C_{MS} S_D^2 = 3,23 \cdot 10^{-6} \text{ m}^5/\text{newton}$$

$$C_{MES} = \frac{Q_{MS}}{\omega_{S} \cdot R_{ES}} = 1.1 \cdot 10^{-3} \text{ farad}$$
$$BI = \sqrt{\frac{M_{MS}}{C_{MES}}} = 8.597 \text{ weber/m}$$

È bene ricordare a questo punto che nel sistema SI la densità di flusso magnetico deve essere espressa in Tesla (= weber/m²) e non più in Gauss (= 10^{-4} Tesla) che è unità di misura del sistema CGS.

L'altoparlante in esame possiede una bobina con 140 spire avvolta su un nucleo di 50 mm di diametro per una altezza complessiva di 24 mm. La lunghezza totale I di avvolgimento, che compare nelle formule, tiene conto solo del filo attraversato dal flusso magnetico per cui risulterebbe:

BI =
$$0.8 \cdot 0.157 \cdot 140 \cdot \frac{10}{24} = 7.33$$
 weber/m

Questo prodotto B I è inferiore al dato prima rilevato di circa il 15%, perché non tiene conto dei flussi magnetici dispersi.

Continuando la ricerca delle costanti dell'altoparlante:

 $L_{CES} = C_{MS} B^2 I^2 = 0,11$ henry

$$R_{MS} = \frac{B^2 I^2}{R_{FS}} = 1.275 \text{ ohm meccanici}$$

$$\begin{split} M_{AS} &= \frac{M_{MS}}{S_D^2} = 37.76 \ \text{kg}/\text{m}^4 \\ R_{AS} &= \frac{R_{MS}}{S_D^2} = 592.2 \ \text{ohm acustici} \end{split}$$

$$V_{AS} = Q_o c^2 C_{AS} = 0.451 m^3$$

IAF 4 - Settembre 1978 - Supplemento al n. 74 di SUONO

IL PROBLEMA DEI CROSS-OVER

Gian Piero Abbate

L'Autore affronta il problema della rete di cross-over ottimale per diffusori acustici. L'articolo si rivolge a tecnici del settore e a quanti dispongano degli strumenti matematici per seguire una trattazione basata sull'impiego delle funzioni di trasferimento nel dominio della variabile complessa S.

Per risolvere l'annoso problema della rete di cross-over ottimale, l'Autore propone una soluzione originale da lui sperimentata con successo; nell'articolo non sono però descritte soluzioni pratiche che vengono affidate all'iniziativa del lettore.

Ipotesi teoriche

Il problema che si vuole risolvere è di ottenere che il vettore somma dei suoni provenienti da ciascun filtro sia vettorialmente uguale al vettore-segnale posto all'uscita dell'amplificatore.

Ashley [1] ha mostrato come questo problema si risolva progettando un filtro cross-over che divida il segnale entrante in modo che la somma vettoriale dei segnali uscenti sia ancora il vettore dato.

In altre parole la somma delle funzioni complesse di trasferimento della tensione di ciascuna unità del cross-over deve essere unitaria. Difatti in tutti i sistemi a più vie si assume che il suono proveniente dalle varie unità sia integrato nell'aria, nel tempo che raggiunge l'ascoltatore; inoltre si assume che gli altoparlanti non introducano errori di fase e rispondano perfettamente e istantaneamente al segnale d'ingresso applicato.

In pratica gli altoparlanti rispondono in questo modo solo entro una banda limitata e in ogni caso è bene non superare mai le quattro ottave. Per coprire tutta la banda audio è pertanto necessario avere almeno 3 unità [2].

In questo articolo prenderemo in considerazione solo i filtri del secondo ordine (con la pendenza di 12 dB/oct) perché come vedremo per ordini superiori il discorso non cambia.

L'equazioni date sono basate su «maximally flat Butterworth filters» [3], ma i risultati sono validi per ogni altro filtro.

Tre vie tradizionali

Per un circuito del secondo ordine le tensioni ricevute dalle unità bassi e alti per un ingresso unitario nel circuito di cross-over sono espresse da:

(1)
$$V_{\text{bassi}} = \frac{\omega_o^2}{S^2 + \sqrt{2} \omega_o S + \omega_o^2}$$

(2)
$$V_{alti} = \frac{S^2}{S^2 + \sqrt{2} \omega_o' S + \omega_o'^2}$$

 $\cos \omega_{o}$ pulsazione nominale di cross-over del basso ω'_{o} pulsazione nominale di cross-over degli alti; poniamo inoltre S = j ω e ω = 2 π f. L'unità dei medi è un passa banda che può avere come funzione di trasferimento una funzione del tipo

(3)
$$V_{\text{medi}} = \frac{\sqrt{2} \omega_0 S}{S^2 + \sqrt{2} \omega_0 S + \omega_0^2}$$

oppure

(4)
$$V_{\text{medi}} = \frac{\sqrt{2} \omega_o^{\prime} S}{S^2 + \sqrt{2} \omega_o^{\prime} S + \omega_o^{\prime^2}}$$

o una loro combinazione.

Si può dimostrare che nessuna funzione di questo ripo può rendere unitaria la somma V bassi + V medi + V alti.

Pertanto un tre vie tradizionale è incapace di dare una risposta globalmente piatta sia in fase che in ampiezza.

Alcune considerazioni matematiche

Per semplificare i calcoli poniamo

(5)
$$\omega_{o}^{\prime} = K \omega_{o}$$

ed inoltre

6)
$$S_n = \frac{S}{\omega_o}$$

Si ottiene

17

(7)
$$V_{\text{bassi}} = \frac{1}{S_n^2 + \sqrt{2} S_n + 1}$$

(8)
$$V_{alti} = \frac{S_n}{S_n^2 + K\sqrt{2} S_n + K^2}$$

<u>c</u>2

Se le due unità sono connesse in fase, come normalmente avviene, il vettore somma è

(9)
$$V_{\text{bassi}} + V_{\text{alti}} = V_{\text{somma}} = \frac{1}{S_n^2 + \sqrt{2} S_n + 1} + \frac{S_n^2}{S_n^2 + K \sqrt{2} S_n + K^2}$$

Per rendere unitaria la somma bisogna aggiungere il vettore

(10)
$$V_{\text{diff.}} = \frac{\sqrt{2} S_n + 1}{S_n^2 + \sqrt{2} S_n + 1} + \frac{\kappa \sqrt{2} S_n + \kappa^2}{S_n^2 + \kappa \sqrt{2} S_n + \kappa^2}$$

Con facili passaggi si ottiene

(11)
$$V_{\text{diff.}} = \frac{K\sqrt{2}S_n^3 + (K^2 + 2K - 1)S_n^2 + K^2\sqrt{2}S_n}{(S_n^2 + \sqrt{2}S_n + 1) \cdot (S_n^2 + K\sqrt{2}S_n + K^2)}$$

Questa è pertanto la funzione di trasferimento che deve avere il passabanda per linearizzare tutta la risposta acustica del diffusore supposti ideali i trasduttori.

Il nuovo passa banda

Come si può rilevare dalla breve trattazione matematica, la funzione di trasferimento del passa banda deve essere la (11).

Realizzare con i metodi usuali un simile passa banda è piuttosto complesso e dispendioso, senza considerare che le tolleranze sui componenti possono rendere vani tutti i nostri sforzi; in definitiva questa funzione di trasferimento o viene approssimata o deve essere realizzata in altro modo.

Una possibile soluzione al problema è proposta dallo schema a blocchi di figura 1.

Come si può vedere la funzione del passa banda viene realizzata sommando alle uscite del passa basso e del passa alto il segnale d'ingresso invertito.

Naturalmente la somma dei tre segnali uscenti è sempre uquale al segnale entrante.

La soluzione proposta in fig. 1 è realizzabile sia in forma passiva che attiva, ma nella sua versione attiva risulta applicabile ad ogni livello di potenza e pertanto particolarmente adatto per i sistemi a casse attive (active loudspeaker systems) [5].

Risposta ampiezza/frequenza del filtro passa-banda proposto

Avendo posto

$$\omega'_{o} = K \omega_{o}$$

la V_{diff} è funzione di K, oltre che di S. Per $\overline{K} = 1$ si ricade nel caso noto del «filler driver» [6],

.

proposto da Baekgaard [4]. Questa è una soluzione a due vie realizzata però con 3 unità indipendenti.

Per K>1 l'andamento della funzione varia al variare di K e di ω_0 .

All'aumentare di K la risposta del filtro si allarga sempre più, presentando da un certo K in poi due picchi di risposta che non superano mai i +3 dB.

A titolo d'esempio in fig. 2 sono riportati i grafici della risposta in ampiezza per vari K ed f_o = $\omega_o/2\pi$.

Nella pratica bisogna scegliere opportunamente K e fo in base alle caratteristiche degli altoparlanti impiegati.

Circuiti cross-over di più alto ordine

Il circuito di fig. 1 è utilizzabile anche con filtri di ordine superiore al secondo.

Il principio di funzionamento è sempre lo stesso, solo che i filtri passa basso e passa alto sono più dispendiosi e calano con pendenze maggiori dei 12 dB/oct.

Viceversa la pendenza del passa banda rimane sempre

G.P. Abbate - Il problema dei cross-over

Figura 2 - Caratteristiche ampiezza/frequenza del filtro passa banda proposto, per alcuni valori di f_o e K.

IAF 4 - Settembre 1978 - Supplemento al n. 74 di SUONO

di 6 dB/ott con andamento analogo a uno dei quelli riportati in figura 2.

Infatti se n è l'ordine dei filtri usati, il filtro passa basso sarà del tipo

(12)
$$f(S) = \frac{A_o}{A_n S^n + A_{n-1} S^{n-1} + \dots + A_o} = \frac{A_o}{\sum_{m=0}^n A_m S^m}$$

e il filtro passa alto del tipo

(13)
$$f(S) = \frac{A_n S^n}{A_n S^{n+A_{n-1}} S^{n-1} + \dots + A_o} = \frac{A_n S_n}{\sum_{m=0}^n A_m S_m}$$

pertanto il passa banda, qualsiasi sia n, sarà del tipo

(14)
$$f(S) = \frac{A_{n-1} S^{n-1} + A_{n-2} S^{n-2} + \dots + A_1 S}{A_n S^n + A_{n-1} S^{n-1} + \dots + A_0} = \frac{\sum_{m=1}^{n} A_m S_m}{\sum_{m=0}^{n} A_m S_m}$$

n-1

e perciò del primo ordine (6 dB/oct). Ciò provoca alcuni problemi di carattere pratico.

Considerazioni finali

Osservando i grafici di fig. 2 si può notare che per K sufficientemente elevati (frequenze d'incrocio abbastanza diverse) l'altoparlante dei medi è chiamato a rispondere in un campo di frequenze troppo elevato (per K = 10 la banda copre ben 5 ottave e mezza a -3 dB).

Pertanto praticamente K può variare tra 1 e 4 e bisogna utilizzare woofer e tweeter di buona qualità, in grado di sopportare «tagli» alti per il woofer e molto bassi (sull'ordine di 4/5 KHz) per il tweeter.

Per concludere ricordiamo che l'ipotesi teorica si basa su modelli di trasduttori ideali; viceversa nella progettazione dei filtri reali si dovrà tenere conto degli errori di risposta in fase e ampiezza introdotti dagli altoparlanti e dalla loro disposizione sul frontale della cassa acustica.

Bibliografia

- [1] Ashley, J. Robert, On the transient response of ideal crossover networks, J.A.E.S., July 1962.
- [2] Ashley, J. Robert, Kamiusky, Alan L., Active and passive filters as loudspeaker cross over networks, J.A.E.S., June 1971.
- [3] Small, Richard M., Costant-voltage cross over network design, J.A.E.S., January 1971.
- [4] Loudspeakers- the missing link. Paper of the 50th Convention of the A.E.S., London 1975.
- [5] Russel, Howard T., Design active filters with less effort, Electronic Design, January 1971.
- [6] Pramanik, S.K. Cross over networks and phase response, Wireless World, November 1975.

Facilities Internal

and a second to the second second